Clustering suicides: A data-driven, exploratory machine learning approach
نویسندگان
چکیده
منابع مشابه
Thoughtful Machine Learning - A Test-Driven Approach
Spend your time even for only few minutes to read a book. Reading a book will never reduce and waste your time to be useless. Reading, for some people become a need that is to do every day such as spending time for eating. Now, what about you? Do you like to read a book? Now, we will show you a new book enPDFd thoughtful machine learning a test driven approach that can be a new way to explore t...
متن کاملUsing Machine Learning for Exploratory Data Analysis
This tutorial will introduce attendees to fundamental concepts in the clustering and dimensionality reduction fields of unsupervised machine learning. Attendees will learn about the assumptions algorithms make and how those assumptions can cause the algorithms to be more or less suited to particular datasets. Hands-on interaction with machine learning algorithms on real and synthetic data are a...
متن کاملEnhancing Learning from Imbalanced Classes via Data Preprocessing: A Data-Driven Application in Metabolomics Data Mining
This paper presents a data mining application in metabolomics. It aims at building an enhanced machine learning classifier that can be used for diagnosing cachexia syndrome and identifying its involved biomarkers. To achieve this goal, a data-driven analysis is carried out using a public dataset consisting of 1H-NMR metabolite profile. This dataset suffers from the problem of imbalanced classes...
متن کاملDebt Collection Industry: Machine Learning Approach
Businesses are increasingly interested in how big data, artificial intelligence, machine learning, and predictive analytics can be used to increase revenue, lower costs, and improve their business processes. In this paper, we describe how we have developed a data-driven machine learning method to optimize the collection process for a debt collection agency. Precisely speaking, we create a frame...
متن کاملExploratory Machine Learning Analysis of Real Network Log Data
Intrusion detection systems often rely on hard checks of incoming requests to identify whether traffic is safe or malicious. Various machine learning approaches have been developed to mine large-scale network logs and help to identify anomalous traffic patterns. In this paper, we apply several machine learning approaches to real data from the MIT network. We describe how these methods could be ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: European Psychiatry
سال: 2019
ISSN: 0924-9338,1778-3585
DOI: 10.1016/j.eurpsy.2019.08.009